Highlights from the last 2 years in Campy

It has been two years since the last major Campylobacter meeting, and there have been a number of exciting publications during that time. We have catalogued some of the highlights here.

Click a topic to see a list of publications:

Pathogenicity and virulence factors highlights

  • Alzheimer, M. et al. (2020) ‘A three-dimensional intestinal tissue model reveals factors and small regulatory RNAs important for colonization with Campylobacter jejuni’, PLOS Pathogens, 16(2), p. e1008304. doi: https://doi.org/10.1371/journal.ppat.1008304.
  • Balta, I. et al. (2021) ‘The effect of natural antimicrobials on the Campylobacter coli T6SS+/− during in vitro infection assays and on their ability to adhere to chicken skin and carcasses’, International Journal of Food Microbiology, 338, p. 108998. doi: https://doi.org/10.1016/j.ijfoodmicro.2020.108998.
  • Bogacz, M. et al. (2021) ‘Binding of Campylobacter jejuni FliW Adjacent to the CsrA RNA-Binding Pockets Modulates CsrA Regulatory Activity’, Frontiers in Microbiology, 11. doi: https://doi.org/10.3389/fmicb.2020.531596.
  • Cao, X. et al. (2020) ‘The Unique Phospholipidome of the Enteric Pathogen Campylobacter jejuni: Lysophosholipids Are Required for Motility at Low Oxygen Availability’, Journal of Molecular Biology, 432(19), pp. 5244–5258. doi: https://doi.org/10.1016/j.jmb.2020.07.012.
  • Davies, C. et al. (2019) ‘Sodium Taurocholate Stimulates Campylobacter jejuni Outer Membrane Vesicle Production via Down-Regulation of the Maintenance of Lipid Asymmetry Pathway’, Frontiers in Cellular and Infection Microbiology, 9. doi: https://doi.org/10.3389/fcimb.2019.00177.
  • Elgamoudi, B. A. et al. (2021) ‘The Campylobacter jejuni chemoreceptor Tlp10 has a bimodal ligand-binding domain and specificity for multiple classes of chemoeffectors’, Science Signaling, 14(664). doi: https://doi.org/10.1126/scisignal.abc8521.
  • Elmi, A. et al. (2018) ‘The bile salt sodium taurocholate induces Campylobacter jejuni outer membrane vesicle production and increases OMV-associated proteolytic activity’, Cellular Microbiology, 20(3), p. e12814. doi: https://doi.org/10.1111/cmi.12814.
  • Garber, J. M. et al. (2020) ‘The gastrointestinal pathogen Campylobacter jejuni metabolizes sugars with potential help from commensal Bacteroides vulgatus’, Communications Biology, 3(1), pp. 1–11. doi: https://doi.org/10.1038/s42003-019-0727-5.
  • Guérin, A. et al. (2020) ‘Membrane Proteocomplexome of Campylobacter jejuni Using 2-D Blue Native/SDS-PAGE Combined to Bioinformatics Analysis’, Frontiers in Microbiology, 11. doi: https://doi.org/10.3389/fmicb.2020.530906.
  • Heimesaat, M. M. et al. (2020) ‘Peptidase PepP is a novel virulence factor of Campylobacter jejuni contributing to murine campylobacteriosis’, Gut Microbes, 12(1), p. 1770017. doi: https://doi.org/10.1080/19490976.2020.1770017.
  • Henderson, L. D. et al. (2020) ‘Diversification of Campylobacter jejuni Flagellar C-Ring Composition Impacts Its Structure and Function in Motility, Flagellar Assembly, and Cellular Processes’, mBio. Edited by E. G. Ruby, 11(1), pp. e02286-19, /mbio/11/1/mBio.02286-19.atom. doi: https://doi.org/10.1128/mBio.02286-19.
  • Irons, J. et al. (2019) ‘Cj1388 Is a RidA Homolog and Is Required for Flagella Biosynthesis and/or Function in Campylobacter jejuni’, Frontiers in Microbiology, 10. doi: https://doi.org/10.3389/fmicb.2019.02058.
  • Kovács, J. K. et al. (2020) ‘Virulence Traits of Inpatient Campylobacter jejuni Isolates, and a Transcriptomic Approach to Identify Potential Genes Maintaining Intracellular Survival’, Microorganisms, 8(4), p. 531. doi: https://doi.org/10.3390/microorganisms8040531.
  • Kreutzberger, M. A. B. et al. (2020) ‘Atomic structure of the Campylobacter jejuni flagellar filament reveals how ε Proteobacteria escaped Toll-like receptor 5 surveillance’, Proceedings of the National Academy of Sciences, 117(29), pp. 16985–16991. doi: https://doi.org/10.1073/pnas.2010996117.
  • Li, X. et al. (2020) ‘Investigating the Role of FlhF Identifies Novel Interactions With Genes Involved in Flagellar Synthesis in Campylobacter jejuni’, Frontiers in Microbiology, 11, p. 460. doi: https://doi.org/10.3389/fmicb.2020.00460.
  • Liaw, J. et al. (2019) ‘The Campylobacter jejuni Type VI Secretion System Enhances the Oxidative Stress Response and Host Colonization’, Frontiers in Microbiology, 10. doi: https://doi.org/10.3389/fmicb.2019.02864.
  • Lin, C. S.-H. et al. (2021) ‘Peptidoglycan binding by a pocket on the accessory NTF2-domain of Pgp2 directs helical cell shape of Campylobacter jejuni’, Journal of Biological Chemistry, 0(0). doi: https://doi.org/10.1016/j.jbc.2021.100528.
  • Mehat, J. W., La Ragione, R. M. and van Vliet, A. H. M. (2020) ‘Campylobacter jejuni and Campylobacter coli autotransporter genes exhibit lineage-associated distribution and decay’, BMC Genomics, 21(1), p. 314. doi: https://doi.org/10.1186/s12864-020-6704-z.
  • Negretti, N. M. et al. (2021) ‘The Campylobacter jejuni CiaD effector co-opts the host cell protein IQGAP1 to promote cell entry’, Nature Communications, 12(1), p. 1339. doi: https://doi.org/10.1038/s41467-021-21579-5.
  • Saha, C. et al. (2020) ‘Guide-free Cas9 from pathogenic Campylobacter jejuni bacteria causes severe damage to DNA’, Science Advances, 6(25), p. eaaz4849. doi: https://doi.org/10.1126/sciadv.aaz4849.
  • Talukdar, P. K. et al. (2020) ‘Molecular Dissection of the Campylobacter jejuni CadF and FlpA Virulence Proteins in Binding to Host Cell Fibronectin’, Microorganisms, 8(3), p. 389. doi: https://doi.org/10.3390/microorganisms8030389.
  • Tram, G. et al. (2020) ‘Assigning a role for chemosensory signal transduction in Campylobacter jejuni biofilms using a combined omics approach’, Scientific Reports, 10(1), p. 6829. doi: https://doi.org/10.1038/s41598-020-63569-5.